# USN

## Third Semester B.E. Degree Examination, June 2012

### **Electronic Instrumentation**

Time: 3 hrs. Max. Marks: 100

# Note: Answer FIVE full questions, selecting at least TWO questions from each part.

#### PART - A

- 1 a. Define the following terms:
  - i) Gross error and systematic error
  - ii) Absolute error and relative error

(06 Marks) (08 Marks)

- b. Explain the working of true RMS voltmeter, with a neat block diagram.
- c. Convert a basic D' Arsonal movement with an internal resistance of  $100\Omega$  and a full scale deflection of 10 mA into a multi range dc voltmeter with ranges from 0-5 V, 0-50 V and 0-100 V. (06 Marks)
- 2 a. A  $4\frac{1}{2}$  digit voltmeter is used for voltage measurement:
  - i) Find its resolution
  - ii) How would 12.98 V be displayed on 10 V range?
  - ii) How would 0.6973 V be displayed on 1 V and 10 V range?

(07 Marks)

- b. Explain the working principle of successive approximation digital voltmeter, with the help of block diagram. (07 Marks)
- c. With a basic block diagram, explain the method used for digital measurement of time period.
  (06 Marks)
- 3 a. Explain the working of dual trace oscilloscope, with a neat block diagram and necessary waveforms. (10 Marks)
  - b. With the help of basic block diagram and circuit diagram, explain the working principle of electronic switch. (08 Marks)
  - c. Briefly explain about the focus control knob available on the CRO panel. (02 Marks)
- 4 a. Describe the working of oscilloscope delayed time base system, with the help of block diagram and associated waveforms. (10 Marks)
  - b. Explain the basic operation of digital storage oscilloscope, with the help of block schematic and associated waveforms. (10 Marks)

#### PART - B

- 5 a. With the help of block diagram, explain the working of modern laboratory signal generator.
  - b. Explain the working principle of frequency synthesizer, with a neat block diagram. (10 Marks)

- 6 a. Mention the limitations of wheatstone's bridge. Derive the balance equation for Kelvin's double bridge. (10 Marks)
  - b. A capacitance comparison bridge is used to measure a capacitive impedance at a frequency of 2 kHz. The bridge constants at balance are  $C_3 = 100 \mu F$ ,  $R_1 = 10 K\Omega$ ,  $R_2 = 50 K\Omega$  and  $R_3 = 100 K\Omega$ . Find the equivalent circuit of the unknown impedance. (04 Marks)
  - c. Derive an expression for frequency of the wein bridge circuit. (06 Marks)
- 7 a. Explain the construction and working of bonded resistance wire strain gauge and semiconductor strain gauge. (10 Marks)
  - b. With necessary sketches, explain the construction and working principle of LVDT.

(10 Marks)

**8** a. Mention the advantages and limitations of RTD.

(04 Marks) (04 Marks)

b. Define the terms: i) Seebeck effect, ii) Peltier effect.

- Also discuss the
- c. Explain how bolometer bridge can be used for the measurement of power. Also discuss the application of unbalanced bolometer bridge. (08 Marks)
- d. List the important features of LCD.

(04 Marks)

\* \* \* \* \*